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ABSTRACT

The WebAssembly standard defines a bytecode format serving as

a compilation target for languages such as C, C++, and Rust. We-

bAssembly compilers are built on top of existing compiler infras-

tructures such as LLVM and newly developed compiler toolchains

such as Binaryen, handling various new features of the WebAssem-

bly language. However, we observe that both these new and existing

infrastructures implicitly assume that the execution environments

of native and WebAssembly applications are the same, ignoring the

presence of browser compilers in the WebAssembly pipeline. This

incorrect assumption often misguides function inlining optimiza-

tions, resulting in a slower WebAssembly module when function

inlining is applied. This paper is the first to investigate the coun-

terintuitive impacts of function inlining on WebAssembly runtime

performance. We inspect the inlining optimization passes of the

LLVM and Binaryen infrastructures used in the Emscripten C/C++-

to-WebAssembly compiler. Our investigation on 127 C/C++ samples

from the LLVM test suite shows that 66 samples exhibit counterin-

tuitive behavior due to function inlining, particularly from inlining

hot functions into long-running functions. We hope our findings

motivate further work on revising existing optimizations with the

unique characteristics of WebAssembly environments in mind.
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1 INTRODUCTION

WebAssembly (abbreviated Wasm) [34] is a low-level, statically

typed language aiming to serve as a universal compilation target
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for the Web. It is designed to be fast to compile and run; to be

portable, i.e., language-, hardware-, and platform-independent; and

to have formal type and memory safety guarantees. WebAssem-

bly is supported on all four major browsers (i.e., Chrome, Firefox,

Safari, and Edge) [51] and compiles from several programming

languages, including C, C++, C#, Rust, and Go [26]. Recent studies

have shown that one out of every 600 websites use WebAssem-

bly [35] for purposes such as games [40, 69], cryptography [60, 70],

machine learning [66], and medical research [33, 38].

WebAssembly compilers leverage the same compiler infrastruc-

tures as compilers of traditional languages. For example, the Em-

scripten C/C++-to-WebAssembly compiler [10], the Rustc com-

piler [17], and Intel’s oneAPI compiler [6] all use the LLVM [7]

compiler infrastructure. Unfortunately, we observe that WebAssem-

bly compilers leverage existing infrastructures without considering

the differences between WebAssembly and native applications.
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Figure 1: Chromium tier-up process. In this example, func-

tion $main uses the Liftoff-generated code when first called

as it is the only code available. $main calls $f1 which only has

Liftoff code ready. $f2 uses the TurboFan-generated code as

it is available at the first call. On the second call to $f1, its
TurboFan-generated code is available and used for the call.

One of the substantial differences is that WebAssembly has the

additional compilation layer at runtime running within browsers,

generating the final machine code for WebAssembly instructions.

Browsers, such as Chromium [2] and Firefox [13], typically include

at least two WebAssembly compilers: a fast compiler emitting un-

optimized code and a slow compiler emitting highly optimized

code. Browsers use both compilers to ensure the machine code for

WebAssembly functions is available early and can perform faster

once the optimized code is available. When the optimized code is

ready, the code is tiered-up on the following function call invoca-

tion by replacing the unoptimized code with the optimized code.

The tiering-up process only occurs on a function call because the

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
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function (e.g., a heuristic on the function’s code size) to determine

if it is beneficial to inline. The Middle-end component passes the

optimized IR to the CodeGen component to create a WebAssem-

bly module. Next, the module is passed to Binaryen’s wasm-opt

tool [18], which applies Binaryen’s set of optimization passes to

the module. In Binaryen, function inlining is performed by the

inlining-optimizing pass. Similar to the inline pass in LLVM, the

inlining-optimizing pass moves function instructions into the loca-

tion of the original call site if the calculated inlining cost is less than

a threshold value. Differences between these passes include the IR

structures that are inlined as LLVM can also inline its block struc-

tures. Besides, Binaryen can support partial inlining of early-return

conditional statements [18]. Figure 3 illustrates Binaryen’s function

inlining. Finally, the compilation pipeline outputs the optimized

WebAssembly binary and JavaScript support code.

2.2 WebAssembly Execution Pipeline

The generated WebAssembly module and JavaScript files are run

by a browser such as Chromium [2] or Firefox [54], which each

have different internal compilers to generate machine code for the

WebAssembly module. For example, Chromium is powered by the

V8 JavaScript and WebAssembly engine [16], which includes two

compilation engines to generate machine code for WebAssembly.

The first compiler, Liftoff [25], is a single-pass compiler that emits

machine instructions immediately after reading in a WebAssembly

instruction at the expense of the number of optimizations that it

applies. As a result, the Liftoff code can perform sub-optimally

when executed. The second compiler, TurboFan [14], is a multi-pass

compiler that applies several optimization passes to the machine

code. While TurboFan generates faster code, this compiler takes

much longer to generate code than Liftoff. To balance start-up speed

with execution performance, Chromium first generates code for

WebAssembly functions with Liftoff and immediately starts the

TurboFan compilation. When the TurboFan code for a function

is ready, the function code tiers-up by replacing the Liftoff code

with the TurboFan code. Firefox uses the SpiderMonkey JavaScript

and WebAssembly engine [13] to handle WebAssembly execution.

Similar to V8, SpiderMonkey contains two compilation engines for

WebAssembly. The first compiler,Wasm-Baseline, performs a fast

translation of WebAssembly instructions to machine code for quick

startup. The second engine, Wasm-Ion, applies optimizations on

the emitted machine code. SpiderMonkey follows the tiering-up

scheme by using Wasm-Baseline to emit machine code quickly

while Wasm-Ion generates better-performing machine code.

3 COUNTERINTUITIVE INLINING EXAMPLE

We demonstrate how function inlining can counterintuitively im-

pact runtime behavior using a sample benchmarking program, ran-

dom.cpp, as an example. We present its source code and compiled

WebAssembly code in Figure 4. We highlight the impact on two of

the sample’s functions when the function inlining is enabled and

disabled. Figure 4(a) shows the C++ source code implementation of

the functions gen_random and main. gen_random uses the constants
IM, IA, and IC to generate a pseudo-random number. The main

function calls gen_random in a long-running while loop perform-

ing 400 million iterations, making gen_random a hot function. Fig-
ure 4(b) shows the WebAssembly code of wasm-function[13] and
wasm-function[14] when function inlining is disabled. The export

section on line 180 shows that wasm-function[13] implements main.
Inspecting the loop code within wasm-function[13] shows that it
calls wasm-function[14] with the value 100.0 passed in as an ar-

gument, meaning that wasm-function[14] implements gen_random.
Figure 4(c) shows the WebAssembly code for the main function,

wasm-function[13], produced when inlining is enabled. Inspecting

Figure 4(b) and Figure 4(c) reveals that wasm-function[14] from

Figure 4(b) has been inlined into wasm-function[13].
When the Chromium browser runs this WebAssembly module,

machine code for each function is first generated using the Liftoff

compiler. Once this compiler finishes generating code for a function,

the function can begin executing. In the background, the optimizing

TurboFan compiler begins generating better-performing machine

code for that function. When TurboFan finishes generating the ma-

chine code, the browser switches out the Liftoff-generated code for

the TurboFan-generated code on the following function call. How-

ever, since main in a C program is only invoked once, the browser

does not switch to the TurboFan-generated code. Because the hot

function gen_random has been inlined into main, gen_random also
uses the slower Liftoff code, and the program runtime performance

is negatively impacted. This example shows how function inlining

can cause counterintuitive runtime behavior in WebAssembly.

4 METHODOLOGY

We aim to understand the counterintuitive effects of function inlin-

ing onWebAssembly program runtime. We define a counterintuitive

effect as producing a binary with a slower runtime performance

than if the optimization was disabled. Specifically, we focus on the

following research questions:

• RQ1 – Significance: How often does function inlining coun-

terintuitively impact WebAssembly modules, and are the effects

unique to WebAssembly?

• RQ2 – Function Characteristics: Which characteristics of the

inlined functions cause the counterintuitive behavior?

• RQ3 – Quantification: How does excluding certain functions

from inlining impact the counterintuitive effects?

To answer these questions, we use samples from the LLVM test

suite to perform five sets of experiments. Next, we discuss the C/C++

source programs and the experiments in detail.

4.1 C/C++ Source Programs

To measure the runtime performance impacts of different optimiza-

tion configurations, we select 143 C/C++ samples totaling over

34,000 lines of code (LOC) from the LLVM test suite [8]. The test

suite contains benchmarking samples measuring LLVM compi-

lation performance. We focus on the samples within the Single-

Source/Benchmarks directory, listed in Table 2, as these samples

are designed to trigger optimizations and can be compiled by Em-

scripten without code changes. We select this test suite for its

inclusion of samples used in prior works and it ease of compilation.

This test suite includes samples from the Polybench benchmark

suite [59], whichwas used by Jangda et al. to compareWebAssembly
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7 DISCUSSION

7.1 Limitations

Our investigation of WebAssembly performance suffers from two

main limitations. First, the precision of our custom-built JavaScript

measurement tool limits the depth of our investigation.Most browsers

limit JavaScript timers to millisecond resolution [52], which is too

coarse to measure a typical WebAssembly call. As a result, we focus

on samples that have long running functions with runtimes in the

magnitude of seconds. We also focus on samples with a percent

decrease greater than 5% to account for the lack of precision.

Our second limitation is that we only inspect two browsers,

Chromium and Firefox. Inspecting each browser adds additional

manual work, and we are limited by our budget of manual effort

available. We accept this limitation as Chromium-based browsers

and Firefox account for 74% of the browser market share [1].

7.2 Threats to Validity

7.2.1 Internal Validity. Our study results are subject to possible

errors in the manual inspection processes. We manually inspect the

emitted code to ensure that function inlining is present or omitted

as per the tested configuration. We use the average of 10 runs to

ensure changes are not caused by small runtime variations. Multi-

ple factors, such as hardware, operating system, and system load,

make it difficult to reproduce the exact runtime values we record.

However, we describe the steps used to establish our Baseline ex-

periment. The counterintuitive behavior, relative to the baseline,

should remain consistent across different experimental setups.

7.2.2 External Validity. We use benchmarking samples from the

LLVM test suite. As Emscripten is an LLVM-based compiler, we find

that this collection of benchmarks curated by the LLVM develop-

ment team is well-suited to assess the compilation effects caused by

the inlining passes. The compiler benchmark samples also perform

intensive computations, an intended use case of WebAssembly.

7.2.3 Construct Validity. We identify the runtime impacts of func-

tion inlining optimizations by measuring the program runtime

through browser execution timing, native execution timing, and

event profiling tools. These measurement methods should highlight

changes caused by different optimizations used in the samples.

7.3 Future Work

Our current work only investigates the counterintuitive behavior

of two inlining optimization passes. Our measurements show cases

where these two passes alone cannot explain the counterintuitive

behavior, indicating that other optimization passes also cause the

behavior. We plan to study the other LLVM and Binaryen passes

for similar counterintuitive behavior.

Our current analysis only focuses on a single metric for coun-

terintuitive behavior: runtime performance. We plan to investigate

possible counterintuitive changes in other metrics, such as code

size, memory usage, and energy consumption.

8 RELATED WORK

Compiler Optimizations. Existing work studies the impacts of dif-

ferent optimizations on specific processor architectures [28] and

high-level synthesis [30]. Some work proposes optimization frame-

works improving SIMD performance [36]. Other works leverage

machine learning techniques on optimization selection [41, 48].

Theodoridis et al. describe LLVM inlining heuristics improvements

in native applications [68]. To our knowledge, our work is the first

to study inlining performance in WebAssembly compilers.

Compiler Studies. Previous compiler studies investigate the preva-

lence of compiler bugs [62, 67] and survey different compiler testing

approaches [29]. Other studies develop compiler testing techniques,

such as equivalence modulo inputs [42, 43] and skeletal program

enumeration [74].

WebAssembly Performance Measurements. Yan et al. [72] find ev-

idence of optimizations causing counterintuitive effects. Jangda

et al. [37] compare the performance of C programs compiled to

WebAssembly and native code. In contrast, our work focuses on

effects of function inlining on WebAssembly applications.

WebAssembly Program Analysis and Security. Several works ana-

lyze WebAssembly execution and security. Hilbig et al. [35] report

the use cases and statistics of real-world WebAssembly binaries.

Several tools dynamically analyze WebAssembly execution [45, 64],

identify module purposes [63], and recover high-level type informa-

tion from the binaries [46]. Prior work proposes specification and

compiler extensions to improve security [32, 39, 56, 70, 71]. Other

works identify vulnerabilities inWebAssembly applications [44, 47],

propose attack strategies using WebAssembly [61], and detect ma-

licious WebAssembly modules [65].

9 CONCLUSION

Function inlining optimizations in WebAssembly compilers fail to

consider the presence of multiple browser compilers, leading to

runtime performance issues. We provide the first in-depth inves-

tigation on the counterintuitive impact that function inlining can

have on WebAssembly modules. Inlining can prevent hot function-

ality in the modules from leveraging optimized machine code if

the functions are inlined into long-running or seldomly invoked

functions, leading to noticeable performance degradation of the

whole application. We find that this behavior effects 66 out of 127

samples in the LLVM test suite and is caused by the inlining passes

in both the LLVM and Binaryen components of Emscripten. We

hope our work highlights the need to revisit existing optimization

techniques for optimal WebAssembly usage.

10 DATA AVAILABILITY

Wemake our experiment results and data collection scripts available

on Zenodo at https://zenodo.org/record/7041455 [23]. This artifact

contains the measured runtime results for all of our experiments

and the scripts used to run the experiments.
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